Antecedents of workfamily discord amid Silk municipal staff

From Long Shots
Jump to navigation Jump to search

The actual number of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is difficult to estimate using a case-reporting system (i.e., passive surveillance) alone because of asymptomatic infection. While wastewater-based epidemiology has been implemented as an alternative/additional monitoring tool to reduce reporting bias, the relationship between passive and wastewater surveillance data has not yet been explicitly examined. As there is strong age dependency in the symptomatic ratio of SARS-CoV-2 infections, here, we aimed to estimate i) an age-dependent association between the number of reported cases and viral load in wastewater and ii) the time lag between these time series. The viral load in wastewater was modeled as a combination of contributions from virus shedding by different age groups, incorporating the delay, and fitted with daily case count data collected from the Massachusetts Department of Public Health and SARS-CoV-2 RNA concentration in wastewater recorded by the Massachusetts Water Resources Authority. The estimated lag between the time series of viral loads in wastewater and of reported cases was 10.8 (95% confidence interval 10.2-11.6) and 8.8 (8.4-9.1) days for the northern and southern areas of the wastewater treatment plant, respectively. The estimated contribution rate of a reported case to the viral load in wastewater in the 0-19 yr age group was 0.38 (0.35-0.41) and 0.40 (0.37-0.43) for the northern and southern areas, and that in the 80+ yr age group was 0.67 (0.65-0.69) and 0.51 (0.49-0.52) for the northern and southern areas, respectively. The estimated lag between these time series suggested the predictability of reported cases 10 days later using viral loads in wastewater. The contribution of a reported case in passive surveillance to the viral load in wastewater differed by age, suggesting a large variation in viral shedding kinetics among age groups.A diesel engine running on diesel/biodiesel mixtures containing ethylene glycol diacetate (EGDA) was investigated from the exergoeconomic and exergoenvironmental viewpoints. Biodiesel was mixed with petrodiesel at 5% and 20% volume ratios, and the resultant mixtures were then doped with EGDA at 1-3% volume ratios. The exergetic sustainability indicators of the engine operating on the prepared fuel formulations were determined at varying engine loads. The indicators were selected to support decision-making on fuel composition and engine load following thermodynamic, economic, and environmental considerations. The engine load markedly affected all the studied exergetic parameters. The highest engine exergetic efficiency (39.5%) was obtained for petrodiesel doped with 1 v/v% EGDA at the engine load of 50%. The minimum value of the unit cost of brake power exergy (49.6 US$/GJ) was found for straight petrodiesel at full-load conditions, while the minimum value of the unit environmental impact of brake power exergy (29.9 mPts/GJ) was observed for petrodiesel mixed with 5 v/v% biodiesel at the engine load of 75%. Overall, adding EGDA to fuel mixtures did not favorably influence the outcomes of both exergetic methods due to its energy-intensive and cost-prohibitive production process. In conclusion, although petrodiesel fuel improvers such EGDA used in the present study could properly mitigate pollutant emissions, the adverse effects of such additives on thermodynamic parameters of diesel engines, particularly on exergoeconomic and exergoenvironmental indices, need to be taken into account, and necessary optimizations should be made before their real-world application.The high demand for sufficient and safe food, and continuous damage of environment by conventional agriculture are major challenges facing the globe. The necessity of smart alternatives and more sustainable practices in food production is crucial to confront the steady increase in human population and careless depletion of global resources. Nanotechnology implementation in agriculture offers smart delivery systems of nutrients, pesticides, and genetic materials for enhanced soil fertility and protection, along with improved traits for better stress tolerance. Additionally, nano-based sensors are the ideal approach towards precision farming for monitoring all factors that impact on agricultural productivity. Furthermore, nanotechnology can play a significant role in post-harvest food processing and packaging to reduce food contamination and wastage. In this review, nanotechnology applications in the agriculture and food sector are reviewed. Implementations of nanotechnology in agriculture have included nano- remediation of wastewater for land irrigation, nanofertilizers, nanopesticides, and nanosensors, while the beneficial effects of nanomaterials (NMs) in promoting genetic traits, germination, and stress tolerance of plants are discussed. Furthermore, the article highlights the efficiency of nanoparticles (NPs) and nanozymes in food processing and packaging. To this end, the potential risks and impacts of NMs on soil, plants, and human tissues and organs are emphasized in order to unravel the complex bio-nano interactions. Finally, the strengths, weaknesses, opportunities, and threats of nanotechnology are evaluated and discussed to provide a broad and clear view of the nanotechnology potentials, as well as future directions for nano-based agri-food applications towards sustainability.Examinations of stormwater delivery in the context of tidal inundation are lacking. Selleck ML324 Along the coastal plains of the southeastern United States, tidal inundation is increasing in frequency and severity, often with dramatic adverse impacts on timely stormwater discharge, coastal flooding hazards, and even "sunny day flooding". Therefore, a comprehensive study was conducted to examine tidally-influenced stormwater outfalls discharging to Taylor's Creek, an estuary proximal to Beaufort, NC used regularly for recreation and tourism. Over a wide range of meteorological conditions, water samples were collected and analyzed for fecal indicator bacteria (FIB, used for water quality management) and previously published quantitative microbial source tracking (qMST) markers. Nineteen sampling events were conducted from July 2017-June 2018 with samples classified according to tidal state and defined as either inundated, receding, or transition. A first-of-its-kind multiple linear regression model was developed to predict ions, but our project demonstrates the need for tidal parameters to be included in the future development of water quality monitoring programs.High-alumina coal fly ash (HAFA) is an important aluminum and silicon resource. In the process of preparing aluminum-silicon materials from HAFA, the influence of impurity elements on its performance must be considered. In this work, the occurrence state of impurities in HAFA, micro morphology, and the bond energy of different impurity coordination were studied. Sulfuric acid leaching method and density functional theory were used to study the leaching behavior of impurities to verify the difficulty of removing different impurity elements. The results show that iron existed in the form of magnetic particles (34.78%), amorphous phase (49.24%), and crystalline phase (15.96%) in HAFA. Titanium mainly existed in amorphous phase (29.34%) and crystalline phase (69.4%). In sulfuric acid leaching, titanium was more difficult to leach, and the content of TiO2 decreased from 2.30% to 2.25%, whereas that of Fe2O3 decreased from 1.50% to 0.86%. The actual leaching behavior of impurity elements was consistent with the simulation results, with more energy required to remove Ti than Fe. These studies of impurity elements in HAFA will provide theoretical support for the preparation of aluminum-silicon materials.Metal-organic frameworks (MOFs) constitute new class of materials recently used by researchers in the field of controlling cyanobacteria. However, the use of MOFs in combination with allelochemicals for cyanobacteria inhibition had not been investigated before. The present study is aimed towards the investigation of the effect and mechanism of cyanobacteria inhibition by combining MOF with allelochemical (ferulic acid, FA) for the first time. In this study, the results showed that the synergistic effect of Zn2+ and FA from Zn-MOF-FA could inhibit cyanobacteria to a greater extent than the corresponding dosage of Zn2+ and FA. The inhibition ratio of Microcystis aeruginosa has been found to be more than 50% when the Zn-MOF-FA concentration exceeds 2 mg·L-1 after four days exposure. Zn-MOF-FA at 1 mg·L-1 did not completely inhibit M. aeruginosa, and the inhibition effect has been of only temporary type. The inhibitory effect of Zn-MOF-FA on algae has mainly been attributed to the hindrance of electron transfer and energy capture in the photosynthetic system and the oxidative damage caused by reactive oxygen species (ROS).In Japan, most cows are fed indoors, so cow manure must be carefully treated and used to manage soil fertility. The objective of this study was to compare the net greenhouse gas (GHG) balance (NGHGB) of Italian ryegrass - corn (maize) double-cropping fields receiving farmyard manure (FYM), slurry, or methane fermentation digestion liquid (MFDL). FYM, Slurry, MFDL, mineral fertilizer only (Fert.), and no-N control (Cont.) plots were set up in a randomized block design (n = 3). FYM, slurry, or MFDL was applied to meet the K requirement for forage production, and then mineral fertilizers were supplemented to meet the N and P requirements. From September 2017 to September 2020, C inputs as manure and crop residue, heterotrophic respiration (RH), and emissions of methane (CH4) and nitrous oxide (N2O) from soil were determined. The similarity of the total yields in FYM, Slurry, MFDL, and Fert. plots reflected judicious fertility management. However, the residue-C input of Italian ryegrass was 38% greater in FYM plots than in the other plots. Manure-C input decreased in the order of FYM > Slurry > MFDL plots. RH was greater in FYM and Slurry plots than in MFDL plots. Net ecosystem C balance (NECB) ([residue-C + manure-C] - [RH-C + CH4-C]) decreased in the order of FYM > Slurry > MFDL plots. N2O emission was greater in Slurry and MFDL plots than in FYM plots. Consequently, NGHGB ([CH4 and N2O emissions] - NECB) in terms of CO2 equivalent decreased in the order of MFDL > Slurry > FYM plots, so FYM application contributed most to GHG mitigation. Yield-scaled NGHGB was smallest in FYM plots owing to the synergy of the greatest residue-C and manure-C inputs, less N2O emission, and the achievement of a high enough yield, reflecting judicious fertility management based on manure and mineral fertilizer.Artificial dams are one of the most common hydraulic structures for mitigating debris flow disasters in alpine valley regions. However, performance alteration and failure after successive debris flows can lead to dam failure, releasing large amounts of materials within a very short time; moreover, the contribution of artificial dam failures to debris flows is poorly understood. This study quantitatively analyzed the artificial dam failure effects based on the numerical simulations of the Zhouqu '8.8' debris flow, with three scenarios all nine dams failed (S1); no dams were ever built (S2); all nine dams remained intact (S3). The results showed that artificial dam failures had a significant amplifying effect on the magnitude of a debris flow. The maximum velocity and flow depth decreased by 20% and 11.2% if all the dams did not collapse; comparison of S1 and S2 showed that discharge and velocity at the front of the debris flow increased by 54.6% and 89%, the bulk density and yield stress increased by 3.3% and 5.